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Matrix

® A matrix is an ordered array of numbers arranged in n rows and m columns.
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Matrix

® A matrix is an ordered array of numbers arranged in n rows and m columns.
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® We usually denote it as A,,,,,, or, to emphasize the nature of numbers in the matrix, we write A € R™*™.



Matrix

® A matrix is an ordered array of numbers arranged in n rows and m columns.
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® We usually denote it as A,,,,,, or, to emphasize the nature of numbers in the matrix, we write A € R™ ™.

® If n = m, the matrix is called square; if n # m, it's called rectangular



Basic operations: transpose

Transpose of a matrix is an operation where rows and columns are swapped. If A € R"*™, then B = AT € R™*",

where b;; = a;;
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Basic operations: matrix addition

® Matrix addition is only possible for matrices of the same size. The result is obtained by adding corresponding
elements. If A, B € R"*™, then C = A+ B, where ¢;; = a;; + b;;
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Example:



Basic operations: scalar multiplication

® Scalar multiplication - each element of the matrix is multiplied by the given number. If A € R™™ and a € R,
then C = aA, where ¢;; = o - a;;
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Another example - Linear combination:

dO R R A

Example:



Vector

In the simplest representation, we treat a vector as a special case of a matrix:

Column vector Row vector

y yi=ln % - y,] R
x

x= |2 eR™! Dimension: 1 X m (matrix with one row)

‘Tn

Dimension: n X 1 (matrix with one column)

Notation
® Vectors: usually denoted by lowercase letters z,v or u
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Vector

In the simplest representation, we treat a vector as a special case of a matrix:

Column vector Row vector
xq yT = [?/1 Yo oo ym] e RV
x
x= |72 eR™! Dimension: 1 X m (matrix with one row)
x

n

Dimension: n X 1 (matrix with one column)

Notation
® Vectors: usually denoted by lowercase letters z,v or u
® Matrices: usually denoted by uppercase letters A, B, C
® By default: vector is considered a column vector
® Transpose: x' converts column to row



Standard approach

Matrix-by-vector multiplication (matvec)
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Matrix-by-vector multiplication (matvec)

Computational complexity and a brief look at parallel computing
Recall the general formula:

m
Y; = Zajkmk, i=12,...,n
k=1

Operations analysis:
® For computing one element y;: m multiplications (each a;, - ), m — 1 additions (summing m products)
® For the entire vector y (n elements): n - (2m — 1) total operations.
Time complexity:
® For square matrix n x n: 0(2n% —n) = O(n?)
® For rectangular matrix n x m: O(nm)

@ Natural parallelism

Computing each element y, is independent of other elements!

® Row-wise parallelization: each processor computes its own Yj



Matrix-by-vector multiplication (matvec)

Guru approach
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Matrix-by-vector multiplication (matvec)

Guru approach
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Matrix-by-vector multiplication (matvec)

Guru approach
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Matrix-by-vector multiplication (matvec)

Guru approach
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Matrix-by-vector multiplication (matvec)

Guru approach
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Matrix-by-vector product
Visual comparison

3 1 2 7
2 4 1 8
A X y
Traditional View: Row-wise Guru View: Column Linear Combination
Calculations: Linear combination:

®y =3-2+1-1=7
® Yy, =2-2+4-1=38
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Matrix-by-matrix multiplication (matmul, General Matrix Multiplication - GEMM)
Standard approach
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Matrix multiplication (matmul, General Matrix Multiplication - GEMM)

Column-wise approach

1 Gz G by big bz v by i1 G2 G130 Cim
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Each column of C' = Ax corresponding column of B

C;=4B;, j=12,..,m




Matrix multiplication (matmul, General Matrix Multiplication - GEMM)

Properties of matrix multiplication
1. Associativity:

(AB)C = A(BC)
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Matrix multiplication (matmul, General Matrix Multiplication - GEMM)

Properties of matrix multiplication

1. Associativity:
(AB)C = A(BC)

2. Distributivity:
A(B+C)=AB+ AC

(A+ B)C = AC + BC

3. Scalar multiplication:
a(AB) = (aA)B = A(aB)



Matrix multiplication (matmul, General Matrix Multiplication - GEMM)

Important limitations
4. Non-commutativity:

AB + BA (in general)
L9
EIEEE

Example: For 2 x 2 matrices:



Matrix multiplication (matmul, General Matrix Multiplication - GEMM)

Important limitations
4. Non-commutativity:

AB + BA (in general)
L9
EIEEE

(AB)T = BT AT

Example: For 2 x 2 matrices:

5. Transpose of product:

i Note

Note the reversed order of matrices when transposing!




Matrix multiplication (matmul, General Matrix Multiplication - GEMM)
Computational complexity and parallelization

Recall the general formula:

k

Cij = g agby, 1=12,...,n, j=1,2,...m
=1

Operations analysis for matrices A4, ;, and B, ,,:
® For computing one element c;;: k multiplications, & — 1 additions
® Total number of operations: n x m x (2k — 1)
Time complexity:
® For square matrices n x n: 0(2n3 —n?) = O(n?)
® For rectangular matrices: O(nmk)

@ Natural parallelism

°® By elements: each c;; is computed independently
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Matrix multiplication (matmul, General Matrix Multiplication - GEMM)
Computational complexity and parallelization

Recall the general formula:

k

Cij = g agby, 1=12,...,n, j=1,2,...m
=1

Operations analysis for matrices A4, ;, and B, ,,:
® For computing one element c;;: k multiplications, & — 1 additions
® Total number of operations: n x m x (2k — 1)
Time complexity:
® For square matrices n x n: 0(2n3 —n?) = O(n?)
® For rectangular matrices: O(nmk)

@ Natural parallelism

By elements: each c;; is computed independently
By rows: each processor handles its rows of matrix A
By columns: each processor handles its columns of matrix B

Block approach: dividing matrices into blocks for efficient cache usage




Example. Simple but important idea about matrix computations.

Suppose you have the following expression

b=A A Az,

where A, Ay, A3 € R332 are random square dense (fully filled with numbers) matrices, and z € R? is a vector. You
need to compute b.
Which approach is best to use?

1. A; A, Agx (left to right)

2. (A; (Ay (A32))) (right to left)

3. It doesn’t matter

4. The results of the first two options will not be the same.

Check the attached .ipynb file in the repository.



