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Matrix

• A matrix is an ordered array of numbers arranged in 𝑛 rows and 𝑚 columns.

𝐴𝑛×𝑚 =
⎡
⎢⎢
⎣

𝑎11 𝑎12 ⋯ 𝑎1𝑚
𝑎21 𝑎22 ⋯ 𝑎2𝑚

⋮ ⋮ ⋱ ⋮
𝑎𝑛1 𝑎𝑛2 ⋯ 𝑎𝑛𝑚

⎤
⎥⎥
⎦

• We usually denote it as 𝐴𝑛×𝑚 or, to emphasize the nature of numbers in the matrix, we write 𝐴 ∈ R𝑛×𝑚.

• If 𝑛 = 𝑚, the matrix is called square; if 𝑛 ≠ 𝑚, it’s called rectangular
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Basic operations: transpose

Transpose of a matrix is an operation where rows and columns are swapped. If 𝐴 ∈ R𝑛×𝑚, then 𝐵 = 𝐴𝑇 ∈ R𝑚×𝑛,
where 𝑏𝑖𝑗 = 𝑎𝑗𝑖

𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

𝐴2×3

𝐴𝑇
𝑎11 𝑎21

𝑎12 𝑎22

𝑎13 𝑎23

𝐵3×2 = 𝐴𝑇



Basic operations: matrix addition

• Matrix addition is only possible for matrices of the same size. The result is obtained by adding corresponding
elements. If 𝐴, 𝐵 ∈ R𝑛×𝑚, then 𝐶 = 𝐴 + 𝐵, where 𝑐𝑖𝑗 = 𝑎𝑖𝑗 + 𝑏𝑖𝑗

Example:

[1 2
3 4] + [5 6

7 8] = [1 + 5 2 + 6
3 + 7 4 + 8] = [ 6 8

10 12]



Basic operations: scalar multiplication

• Scalar multiplication - each element of the matrix is multiplied by the given number. If 𝐴 ∈ R𝑛×𝑚 and 𝛼 ∈ R,
then 𝐶 = 𝛼𝐴, where 𝑐𝑖𝑗 = 𝛼 ⋅ 𝑎𝑖𝑗

Example:

3 ⋅ [1 2
3 4] = [3 ⋅ 1 3 ⋅ 2

3 ⋅ 3 3 ⋅ 4] = [3 6
9 12]

Another example - Linear combination:

2 [1 0
0 1] + 3 [1 1

1 1] = [2 0
0 2] + [3 3

3 3] = [5 3
3 5]



Vector

In the simplest representation, we treat a vector as a special case of a matrix:

Column vector

x =
⎡
⎢⎢
⎣

𝑥1
𝑥2
⋮

𝑥𝑛

⎤
⎥⎥
⎦

∈ R𝑛×1

Dimension: 𝑛 × 1 (matrix with one column)

Row vector

y𝑇 = [𝑦1 𝑦2 ⋯ 𝑦𝑚] ∈ R1×𝑚

Dimension: 1 × 𝑚 (matrix with one row)

Notation
• Vectors: usually denoted by lowercase letters 𝑥, 𝑣 or u

• Matrices: usually denoted by uppercase letters 𝐴, 𝐵, 𝐶
• By default: vector is considered a column vector
• Transpose: x⊤ converts column to row
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Matrix-by-vector multiplication (matvec)
Standard approach

𝑎11 𝑎12 ⋯ 𝑎1,𝑚−1 𝑎1𝑚

𝑎21 𝑎22 ⋯ 𝑎2,𝑚−1 𝑎2𝑚

⋮ ⋮ ⋱ ⋮ ⋮

𝑎𝑛1 𝑎𝑛2 ⋯𝑎𝑛,𝑚−1 𝑎𝑛𝑚

𝐴

𝑥1

𝑥2

⋮

𝑥𝑚−1

𝑥𝑚

x

=

𝑦1

𝑦2

⋮

𝑦𝑛

y

𝑦1 = 𝑎11𝑥1 + 𝑎12𝑥2 + ⋯ + 𝑎1,𝑚−1𝑥𝑚−1 + 𝑎1𝑚𝑥𝑚

𝑦𝑗 =
𝑚

∑
𝑘=1

𝑎𝑗𝑘𝑥𝑘



Matrix-by-vector multiplication (matvec)
Computational complexity and a brief look at parallel computing
Recall the general formula:

𝑦𝑗 =
𝑚

∑
𝑘=1

𝑎𝑗𝑘𝑥𝑘, 𝑗 = 1, 2, … , 𝑛

Operations analysis:
• For computing one element 𝑦𝑗: 𝑚 multiplications (each 𝑎𝑗𝑘 ⋅ 𝑥𝑘), 𝑚 − 1 additions (summing 𝑚 products)
• For the entire vector y (n elements): 𝑛 ⋅ (2𝑚 − 1) total operations.

Time complexity:
• For square matrix 𝑛 × 𝑛: 𝒪(2𝑛2 − 𝑛) = 𝒪(𝑛2)
• For rectangular matrix 𝑛 × 𝑚: 𝒪(𝑛𝑚)

Natural parallelism

Computing each element 𝑦𝑗 is independent of other elements!

• Row-wise parallelization: each processor computes its own 𝑦𝑗



Matrix-by-vector multiplication (matvec)

Guru approach
𝑎11

𝑎21

𝑎31

𝑎12

𝑎22

𝑎32

𝑎13

𝑎23

𝑎33

𝑎14

𝑎24

𝑎34

𝐴

𝑥1

𝑥2

𝑥3

𝑥4

x

=

𝑦1

𝑦2

𝑦3

y



Matrix-by-vector multiplication (matvec)

Guru approach
𝑎11

𝑎21

𝑎31

𝑎12

𝑎22

𝑎32

𝑎13

𝑎23

𝑎33

𝑎14

𝑎24

𝑎34

𝐴

𝑥1

𝑥2

𝑥3

𝑥4

x

=

𝑦1

𝑦2

𝑦3

y

𝑦1 = 𝑎11𝑥1 + 𝑎12𝑥2 + 𝑎13𝑥3 + 𝑎14𝑥4



Matrix-by-vector multiplication (matvec)

Guru approach
𝑎11

𝑎21

𝑎31

𝑎12

𝑎22

𝑎32

𝑎13

𝑎23

𝑎33

𝑎14

𝑎24

𝑎34

𝐴

𝑥1

𝑥2

𝑥3

𝑥4

x

=

𝑦1

𝑦2

𝑦3

y

𝑦1 = 𝑎11𝑥1 + 𝑎12𝑥2 + 𝑎13𝑥3 + 𝑎14𝑥4
𝑦2 = 𝑎21𝑥1 + 𝑎22𝑥2 + 𝑎23𝑥3 + 𝑎24𝑥4



Matrix-by-vector multiplication (matvec)

Guru approach
𝑎11

𝑎21

𝑎31

𝑎12

𝑎22

𝑎32

𝑎13

𝑎23

𝑎33

𝑎14

𝑎24

𝑎34

𝐴

𝑥1

𝑥2

𝑥3

𝑥4

x

=

𝑦1

𝑦2

𝑦3

y

𝑦1 = 𝑎11𝑥1 + 𝑎12𝑥2 + 𝑎13𝑥3 + 𝑎14𝑥4
𝑦2 = 𝑎21𝑥1 + 𝑎22𝑥2 + 𝑎23𝑥3 + 𝑎24𝑥4
𝑦3 = 𝑎31𝑥1 + 𝑎32𝑥2 + 𝑎33𝑥3 + 𝑎34𝑥4



Matrix-by-vector multiplication (matvec)

Guru approach
𝑎11

𝑎21

𝑎31

𝑎12

𝑎22

𝑎32

𝑎13

𝑎23

𝑎33

𝑎14

𝑎24

𝑎34

𝐴

𝑥1

𝑥2

𝑥3

𝑥4

x

=

𝑦1

𝑦2

𝑦3

y

y = 𝑥1
⎡⎢
⎣

𝑎11
𝑎21
𝑎31

⎤⎥
⎦

+𝑥2
⎡⎢
⎣

𝑎12
𝑎22
𝑎32

⎤⎥
⎦

+𝑥3
⎡⎢
⎣

𝑎13
𝑎23
𝑎33

⎤⎥
⎦

+𝑥4
⎡⎢
⎣

𝑎14
𝑎24
𝑎34

⎤⎥
⎦



Matrix-by-vector product
Visual comparison

3 1

2 4
𝐴

2

1
x

=
7

8
y

Traditional View: Row-wise
Calculations:

• 𝑦1 = 3 ⋅ 2 + 1 ⋅ 1 = 7
• 𝑦2 = 2 ⋅ 2 + 4 ⋅ 1 = 8

Guru View: Column Linear Combination
Linear combination:

𝑥

𝑦

2 ⋅ a1 [6
4]

1 ⋅ a2

[1
4]

y

[7
8]

𝑂

First column:

a1 = [3
2]

Second column:

a2 = [1
4]



Matrix-by-matrix multiplication (matmul, General Matrix Multiplication - GEMM)
Standard approach

𝑖-th row

𝑎11 𝑎12 ⋯ 𝑎1𝑘

⋮ ⋮ ⋱ ⋮

𝑎𝑖1 𝑎𝑖2 ⋯ 𝑎𝑖𝑘

⋮ ⋮ ⋱ ⋮

𝑎𝑛1 𝑎𝑛2 ⋯ 𝑎𝑛𝑘

𝐴

𝑗-th column

𝑏11 ⋯ 𝑏1𝑗 ⋯ 𝑏1𝑚

𝑏21 ⋯ 𝑏2𝑗 ⋯ 𝑏2𝑚

⋮ ⋱ ⋮ ⋱ ⋮
𝑏𝑘1 ⋯ 𝑏𝑘𝑗 ⋯ 𝑏𝑘𝑚

𝐵

=

𝑐11 ⋯ 𝑐1𝑗 ⋯ 𝑐1𝑚

⋮ ⋱ ⋮ ⋱ ⋮

𝑐𝑖1 ⋯ 𝑐𝑖𝑗 ⋯ 𝑐𝑖𝑚

⋮ ⋱ ⋮ ⋱ ⋮

𝑐𝑛1 ⋯ 𝑐𝑛𝑗 ⋯ 𝑐𝑛𝑚

𝐶
𝑐𝑖𝑗 = 𝑎𝑖1 ⋅ 𝑏1𝑗 + 𝑎𝑖2 ⋅ 𝑏2𝑗 + ⋯ + 𝑎𝑖𝑘 ⋅ 𝑏𝑘𝑗

𝑐𝑖𝑗 =
𝑘

∑
𝑙=1

𝑎𝑖𝑙𝑏𝑙𝑗



Matrix multiplication (matmul, General Matrix Multiplication - GEMM)

Column-wise approach
𝑎11 𝑎12 ⋯ 𝑎1𝑘

⋮ ⋮ ⋱ ⋮

𝑎𝑖1 𝑎𝑖2 ⋯ 𝑎𝑖𝑘

⋮ ⋮ ⋱ ⋮

𝑎𝑛1 𝑎𝑛2 ⋯ 𝑎𝑛𝑘

𝐴

𝑏11 𝑏12 𝑏13 ⋯ 𝑏1𝑚

𝑏21 𝑏22 𝑏23 ⋯ 𝑏2𝑚

⋮ ⋮ ⋮ ⋱ ⋮
𝑏𝑘1 𝑏𝑘2 𝑏𝑘3 ⋯ 𝑏𝑘𝑚

𝐵

=

𝑐11 𝑐12 𝑐13 ⋯ 𝑐1𝑚

⋮ ⋮ ⋮ ⋱ ⋮

𝑐𝑖1 𝑐𝑖2 𝑐𝑖3 ⋯ 𝑐𝑖𝑚

⋮ ⋮ ⋮ ⋱ ⋮

𝑐𝑛1 𝑐𝑛2 𝑐𝑛3 ⋯ 𝑐𝑛𝑚

𝐶
Each column of 𝐶 = 𝐴× corresponding column of 𝐵

Cj = 𝐴Bj, 𝑗 = 1, 2, … , 𝑚



Matrix multiplication (matmul, General Matrix Multiplication - GEMM)

Properties of matrix multiplication
1. Associativity:

(𝐴𝐵)𝐶 = 𝐴(𝐵𝐶)

2. Distributivity:
𝐴(𝐵 + 𝐶) = 𝐴𝐵 + 𝐴𝐶
(𝐴 + 𝐵)𝐶 = 𝐴𝐶 + 𝐵𝐶

3. Scalar multiplication:
𝛼(𝐴𝐵) = (𝛼𝐴)𝐵 = 𝐴(𝛼𝐵)
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Matrix multiplication (matmul, General Matrix Multiplication - GEMM)

Important limitations
4. Non-commutativity:

𝐴𝐵 ≠ 𝐵𝐴 (in general)

Example: For 2 × 2 matrices:
[1 2
0 1] [1 0

1 1] = [3 2
1 1]

[1 0
1 1] [1 2

0 1] = [1 2
1 3]

5. Transpose of product:
(𝐴𝐵)𝑇 = 𝐵𝑇 𝐴𝑇

Note

Note the reversed order of matrices when transposing!



Matrix multiplication (matmul, General Matrix Multiplication - GEMM)

Important limitations
4. Non-commutativity:

𝐴𝐵 ≠ 𝐵𝐴 (in general)

Example: For 2 × 2 matrices:
[1 2
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Matrix multiplication (matmul, General Matrix Multiplication - GEMM)
Computational complexity and parallelization
Recall the general formula:

𝑐𝑖𝑗 =
𝑘

∑
𝑙=1

𝑎𝑖𝑙𝑏𝑙𝑗, 𝑖 = 1, 2, … , 𝑛, 𝑗 = 1, 2, … , 𝑚

Operations analysis for matrices 𝐴𝑛×𝑘 and 𝐵𝑘×𝑚:
• For computing one element 𝑐𝑖𝑗: 𝑘 multiplications, 𝑘 − 1 additions
• Total number of operations: 𝑛 × 𝑚 × (2𝑘 − 1)

Time complexity:
• For square matrices 𝑛 × 𝑛: 𝒪(2𝑛3 − 𝑛2) = 𝒪(𝑛3)
• For rectangular matrices: 𝒪(𝑛𝑚𝑘)

Natural parallelism

• By elements: each 𝑐𝑖𝑗 is computed independently

• By rows: each processor handles its rows of matrix 𝐴
• By columns: each processor handles its columns of matrix 𝐵
• Block approach: dividing matrices into blocks for efficient cache usage
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𝑎𝑖𝑙𝑏𝑙𝑗, 𝑖 = 1, 2, … , 𝑛, 𝑗 = 1, 2, … , 𝑚

Operations analysis for matrices 𝐴𝑛×𝑘 and 𝐵𝑘×𝑚:
• For computing one element 𝑐𝑖𝑗: 𝑘 multiplications, 𝑘 − 1 additions
• Total number of operations: 𝑛 × 𝑚 × (2𝑘 − 1)

Time complexity:
• For square matrices 𝑛 × 𝑛: 𝒪(2𝑛3 − 𝑛2) = 𝒪(𝑛3)
• For rectangular matrices: 𝒪(𝑛𝑚𝑘)

Natural parallelism

• By elements: each 𝑐𝑖𝑗 is computed independently• By rows: each processor handles its rows of matrix 𝐴
• By columns: each processor handles its columns of matrix 𝐵
• Block approach: dividing matrices into blocks for efficient cache usage



Example. Simple but important idea about matrix computations.

Suppose you have the following expression

𝑏 = 𝐴1𝐴2𝐴3𝑥,

where 𝐴1, 𝐴2, 𝐴3 ∈ R3×3 are random square dense (fully filled with numbers) matrices, and 𝑥 ∈ R3 is a vector. You
need to compute 𝑏.
Which approach is best to use?

1. 𝐴1𝐴2𝐴3𝑥 (left to right)
2. (𝐴1 (𝐴2 (𝐴3𝑥))) (right to left)
3. It doesn’t matter

4. The results of the first two options will not be the same.

Check the attached .ipynb file in the repository.


