
Линейная алгебра
Замена базиса как линейное отображение. Построение матрицы линейного отображения.
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Линейные отоюражения и векторные пространства

Минимальная визуализация 𝜑 ∶ V ⟶ W
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Замена базиса сквозь призму линейного отображения• Давайте рассмотрим самое глупенькое отображение, которое не делает ничего, кроме как находит копию
элемента (identity transformation):

𝜑 ∶ V ⟶ W, W = V,
such that ∀𝑥 ∈ V𝜑(𝑥) = 𝑥 ∈ W

V
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W

[𝑥]𝐶
𝜑

V = W

• Но никто не запрещает использовать разные базисы в разных пространствах. Пусть в пространстве V у
нас действует базис 𝐵 = {𝑣1, 𝑣2}, а в пространстве W действует базис 𝐶 = {𝜔1, 𝜔2}.
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Замена базиса сквозь призму линейного отображения

𝑥 = 𝑥1𝑣1 + 𝑥2𝑣2,𝜑(𝑥) = 𝜑(𝑥1𝑣1 + 𝑥2𝑣2) = 𝑥1𝜑(𝑣1) + 𝑥2𝜑(𝑣2).
Помните, что 𝜑(𝑣1), 𝜑(𝑣2) — это векторы, т.е. абстрактные элементы векторного пространства 𝑊 .
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Замена базиса сквозь призму линейного отображения
Давайте посмотрим на элементы 𝜑(𝑣1), 𝜑(𝑣2) в базисе 𝐶:

𝜑(𝑣1) = 𝑣1 = 𝑎11𝜔1 + 𝑎21𝜔2,𝜑(𝑣2) = 𝑣2 = 𝑎12𝜔1 + 𝑎22𝜔2
Теперь вернемся к 𝜑(𝑥) = 𝑥1𝜑(𝑣1) + 𝑥2𝜑(𝑣2) ⟺ 𝑥 = 𝑥1𝑣1 + 𝑥2𝑣2.

𝜑(𝑥) = 𝑥 = 𝑥1 (𝑎11𝜔1 + 𝑎21𝜔2) + 𝑥2 (𝑎12𝜔1 + 𝑎22𝜔2) =(𝑎11𝑥1 + 𝑎12𝑥2) 𝜔1 + (𝑎21𝑥1 + 𝑎22𝑥2) 𝜔2 =𝛾1𝜔1 + 𝛾2𝜔2• Мы получили разложение элемента 𝜑(𝑥) = 𝑥 по базису пространства W. Можем записать координаты как:

[𝑥]𝐶 = (𝛾1𝛾2) = (𝑎11𝑥1 + 𝑎12𝑥2𝑎21𝑥1 + 𝑎22𝑥2)
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Умножение матрицы на вектор… снова…

Наконец: [𝑥]𝐶 = (𝑎11 𝑎12𝑎21 𝑎22) (𝑥1𝑥2) = 𝐴𝐵→𝐶 [𝑥]𝐵 .
Ď Матрица замены координат

Матрица для identity transformation помогает нам связать координаты одного и того же элемента 𝑥 в двух
разных базисах. Эту формулу также называют формулой замены координат.
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Примеры
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Слайд для записей
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