
Теория вероятностей и математическая статистика
Непрерывные случайные величины. Распределение Пуассона.

Глеб Карпов

ВШБ Бизнес-информатика



Мотивация для нового класса случайных величин
Пример 1: Физические измерения

• Рост человека
• Температура воздуха
• Скорость автомобиля

Пример 2: Время ожидания
• Время ”жизни” детали
• Время между звонками в call-центр

Пример 3: Экономические показатели
• Доходы компании
• Цены на акции

Пример 4: Технические параметры
• Напряжение в сети
• Давление в шинах
• Концентрация вещества

Почему дискретные СВ не подходят?
• Бесконечное количество значений: Время может быть 1.234567 секунды
• Непрерывность: Между любыми двумя значениями есть промежуточные
• Точность измерений: Современные приборы дают очень точные результаты

Вероятность в точке теряет смысл
• Для непрерывных величин вероятность точечного события P(X = a) всегда равна нулю
• Отныне нас будует интересовать только вероятности попадания в интервалы:

𝑃(𝑎 < 𝑋 < 𝑏), 𝑃 (𝑋 > 𝑐), 𝑃 (𝑋 < 𝑑)



Физическое (((((((Лирическое вступление

• Вспомним физику 8-го класса и формулу

𝑚 = 𝜌 ⋅ 𝑉 , [𝑘𝑔] = [ 𝑘𝑔
𝑚3 ] [𝑚3]

• Можем перейти к линейной или погонной плотности 𝜌𝑙 = [ 𝑘𝑔
𝑚 ], которая покажет нам массу единицы

длины некого объекта (метр проволоки, метр провода, метр плитки шоколада). Тогда масса объекта
длины 𝐿 будет:

𝑚 = 𝜌𝑙 ⋅ 𝐿
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Связь линейной плотности и массы
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Связь линейной плотности и массы
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Связь линейной плотности и массы

Значение плотности в точке
• Само по себе значение функции плотности 𝜌(𝑥0) не обозначает массу в точке 𝑥0. Смысл несет именно
произведение плотности на длину, вспомним, чтобы сократились размерности [𝑘𝑔] = [ 𝑘𝑔

𝑚 ] [𝑚]

2 4 6 8 10
1

Рельс :)

𝑥
Объект

2 4 6 8 10

0.1

𝑥0
𝑑𝑥

𝑥

Плотность 𝜌(𝑥)
𝑑𝑚 = 𝜌(𝑥0) ⋅ 𝑑𝑥

Масса кусочка шириной
𝑑𝑥 около точки 𝑥0

Масса = 0.1 ⋅ 0.5 = 0.05



Связь линейной плотности и массы

Переменная плотность
• Не всегда линейная плотность является постоянной! В нашей аналогии из физики мы можем себе
представить рельс, у которого единица длины плавно становится тяжелее от краев к центру.
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0 𝜌(𝑥)𝑑𝑥



Кумулятивная масса
• Теперь мы хотим ввести функцию, которая покажет нам, сколько массы “скопилось” к координате 𝑥.
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1, 𝑥 > 10

Кумулятивная масса



Кумулятивная масса

Пример 1
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Кумулятивная масса

Пример 2
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Функция плотности вероятности

• Мы называем 𝑋 непрерывной случайной величиной, если существует неотрицательная функция 𝑓𝑋(𝑥),
определенная для ∀𝑥 ∈ R, такая что любая вероятность вида 𝑃(𝑎 ≤ 𝑋 ≤ 𝑏) может быть найдена по
формуле:

𝑃(𝑎 ≤ 𝑋 ≤ 𝑏) =
𝑏

∫
𝑎

𝑓𝑋(𝑥)𝑑𝑥

• Нормировка вероятности. Поскольку 𝑃(Ω𝑋) должно быть равно 1, здесь мы имеем:

1 = 𝑃(Ω𝑋) = 𝑃{𝑋 ∈ (−∞, +∞)} =
+∞

∫
−∞

𝑓𝑋(𝑥)𝑑𝑥



Функция плотности вероятности
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Функция распределения(кумулятивная / интегральная)

• Кумулятивная функция распределения случайной величины 𝑋 - это неубывающая функция 𝐹𝑋(𝑥),
определенная для ∀𝑥 ∈ R, такая что:

𝐹𝑋(𝑥) = 𝑃{𝑋 ∈ (−∞, 𝑥]} = 𝑃{𝑋 ≤ 𝑥}

• Для непрерывной случайной величины мы можем переписать это как:

𝐹𝑋(𝑥) = 𝑃{𝑋 ∈ (−∞, 𝑥]} =
𝑥

∫
−∞

𝑓𝑋(𝑡)𝑑𝑡

• Основные свойства:
𝐹𝑋(−∞) = 0, 𝐹𝑋(∞) = 1
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Кумулятивная функция распределения как способ избежать интегрирования
• Предположим, нас интересует 𝑃 (𝑎 < 𝑋 < 𝑏). Рассмотрим интервал 𝒟 = (−∞, 𝑏). Его можно разложить
на объединение двух непересекающихся множеств: 𝒟 = (−∞, 𝑎] ∪ (𝑎, 𝑏).

• Согласно принципу аддитивности вероятности:
𝑃{𝑋 ∈ 𝒟} = 𝑃{𝑋 ∈ (−∞, 𝑎]} + 𝑃{𝑋 ∈ (𝑎, 𝑏)}

• В интегральной формулировке:
𝑏

∫
−∞

𝑓𝑋(𝑥)𝑑𝑥 =
𝑎

∫
−∞

𝑓𝑋(𝑥)𝑑𝑥 +
𝑏

∫
𝑎

𝑓𝑋(𝑥)𝑑𝑥

• Наконец:
𝑏

∫
𝑎

𝑓𝑋(𝑥)𝑑𝑥 = 𝐹𝑋(𝑏) − 𝐹𝑋(𝑎)

Функция плотности вероятности является производной от функции распределения:

𝑓𝑋(𝑥) = 𝐹 ′
𝑋(𝑥) = 𝑑

𝑑𝑥𝐹𝑋(𝑥)
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Пример: анализ функции плотности
• Пусть функция плотности случайной величины 𝑋 задана в виде:

𝑓𝑋(𝑥) =
⎧{
⎨{⎩

0, 𝑥 < 0
𝑐𝑥2, 0 ≤ 𝑥 ≤ 3
0, 𝑥 > 3

Найдите нормировочную константу, построите функцию распределения, посчитайте вероятности
𝑃(−5 < 𝑋 < 2), 𝑃(𝑋 > 1).

• Проверяем выполнение условия нормировки:
+∞

∫
−∞

𝑓𝑋(𝑥)𝑑𝑥 = 1

0

∫
−∞

𝑓𝑋(𝑥)𝑑𝑥 +
3

∫
0

𝑓𝑋(𝑥)𝑑𝑥 +
+∞

∫
3

𝑓𝑋(𝑥)𝑑𝑥 =
0

∫
−∞

0 𝑑𝑥 +
3

∫
0

𝑐𝑥2𝑑𝑥 +
+∞

∫
3

0 𝑑𝑥 = 1

𝑐 𝑥3

3 ∣
3

0
= 9𝑐 = 1 ⟶ 𝑐 = 1

9
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Пример: анализ функции плотности
• Используем формальное определение функции распределения: 𝐹𝑋(𝑥) = 𝑃(𝑋 ≤ 𝑥) =

𝑥
∫

−∞
𝑓𝑋(𝑡)𝑑𝑡

• Рассматриваем так же три области. Первая область ∀𝑥 < 0. Мы знаем, что функция плотности в этой
области равна нулю.

𝑥

∫
−∞

𝑓𝑋(𝑡)𝑑𝑡 =
𝑥

∫
−∞

0 𝑑𝑡 = 0

• Вторая область ∀𝑥 ∈ [0, 3]. Знаем, что на этом интервале у функции плотности определенный вид, плюс
не забудем, что мы еще ранее нашли нормировочную константу.

𝑥

∫
−∞

𝑓𝑋(𝑡)𝑑𝑡 =
0

∫
−∞

𝑓𝑋(𝑡)𝑑𝑡 +
𝑥

∫
0

𝑓𝑋(𝑡)𝑑𝑡 =
0

∫
−∞

0 𝑑𝑡 +
𝑥

∫
0

1𝑡2

9 𝑑𝑡 = 0 + 𝑡3

27 ∣
𝑥

0
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Пример: анализ функции плотности
• Финально, корректная запись функции распределения:

𝐹𝑋(𝑥) =
⎧{
⎨{⎩

0, 𝑥 < 0
𝑥3
27 , 0 ≤ 𝑥 ≤ 3
1, 𝑥 > 3

• Посчитаем вероятности через основное определение и через функцию распределения и сравним
результаты.
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1
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𝑃(𝑋 > 1) = 𝐹𝑋(+∞) − 𝐹𝑋(1) = 1 − 1
27
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Распределение Пуассона

• Что происходит с биномиальным распределением, когда 𝑛 очень велико, а 𝑝 очень мало, но произведение
𝑛𝑝 остается конечным?

• Распределение Пуассона описывает количество событий, происходящих в фиксированном интервале
времени или пространства, при условии, что события происходят независимо с постоянной средней
интенсивностью. Случайная величина 𝑋 имеет распределение Пуассона с параметром 𝜆 > 0, если:

𝑃(𝑋 = 𝑘) = 𝜆𝑘𝑒−𝜆

𝑘! , 𝑘 = 0, 1, 2, …

Обозначается как 𝑋 ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆).
• Параметр 𝜆 - это интенсивность (среднее количество событий за единицу времени/пространства).
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Связь с биномиальным распределением

• Распределение Пуассона возникает как предельный случай биномиального распределения:

Приближение Пуассона

Если 𝑌 ∼ 𝐵𝑖𝑛(𝑛, 𝑝) и 𝑛 → ∞, 𝑝 → 0 таким образом, что 𝑛𝑝 → 𝜆, то:

𝑃(𝑌 = 𝑘) → 𝜆𝑘𝑒−𝜆

𝑘!



Характеристики распределения Пуассона

Основные характеристики

Для случайной величины 𝑋 ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆):
• Математическое ожидание:

𝐸[𝑋] = 𝜆

• Дисперсия:
𝑉 𝑎𝑟[𝑋] = 𝜆

• Стандартное отклонение:
𝜎 =

√
𝜆

Замечательное свойство: У распределения Пуассона математическое ожидание равно дисперсии!
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Пример: приближение биномиального распределения

Завод производит 1000 деталей в день, вероятность брака для каждой детали = 0.002.

Биномиальное распределение: 𝑌 ∼ 𝐵𝑖𝑛(1000, 0.002): 𝐸[𝑌 ] = 1000 ⋅ 0.002 = 2,
𝑉 𝑎𝑟[𝑌 ] = 1000 ⋅ 0.002 ⋅ 0.998 = 1.996
Приближение Пуассона: 𝑋 ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(2): 𝐸[𝑋] = 2, 𝑉 𝑎𝑟[𝑋] = 2
Сравнение вероятностей:

𝑃(𝑌 = 0) = (0.998)1000 ≈ 0.1353

𝑃(𝑋 = 0) = 20𝑒−2

0! = 𝑒−2 ≈ 0.1353



Пример: количество звонков в call-центр

В call-центр поступает в среднем 3 звонка в минуту. Какова вероятность получить ровно 5 звонков за минуту?

• 𝑋 ∼ 𝑃 𝑜𝑖𝑠𝑠𝑜𝑛(3) - количество звонков за минуту

• 𝜆 = 3 звонка/минуту

𝑃(𝑋 = 5) = 35𝑒−3

5! = 243 ⋅ 𝑒−3

120 = 243 ⋅ 0.0498
120 ≈ 0.101

Вероятность получить не более 2 звонков:

𝑃(𝑋 ≤ 2) = 𝑃(𝑋 = 0) + 𝑃(𝑋 = 1) + 𝑃(𝑋 = 2)

= 𝑒−3 + 3𝑒−3 + 9𝑒−3

2 = 𝑒−3(1 + 3 + 4.5) = 8.5𝑒−3 ≈ 0.423
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Применения распределения Пуассона

1. Телекоммуникации: Количество звонков, поступающих на станцию за час

2. Транспорт: Количество автомобилей, проезжающих через перекресток за минуту

3. Медицина: Количество пациентов, поступающих в больницу за день

4. Интернет: Количество посетителей веб-сайта за час

5. Производство: Количество дефектов на единицу продукции

6. Биология: Количество мутаций в ДНК на определенном участке

7. Финансы: Количество крупных колебаний цены акций за торговый день



Пример: анализ веб-трафика

Сайт получает в среднем 120 посетителей в час. Найдем вероятности для 10-минутного интервала.

Пересчет параметра: За 10 минут ожидаем 𝜆 = 120 ⋅ 10
60 = 20 посетителей.

𝑋 ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(20) - количество посетителей за 10 минут.
• Вероятность получить ровно 20 посетителей:

𝑃(𝑋 = 20) = 2020𝑒−20

20! ≈ 0.0888

• Вероятность получить от 15 до 25 посетителей:

𝑃(15 ≤ 𝑋 ≤ 25) =
25

∑
𝑘=15

20𝑘𝑒−20

𝑘! ≈ 0.654



Пример: анализ веб-трафика

Сайт получает в среднем 120 посетителей в час. Найдем вероятности для 10-минутного интервала.

Пересчет параметра: За 10 минут ожидаем 𝜆 = 120 ⋅ 10
60 = 20 посетителей.

𝑋 ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(20) - количество посетителей за 10 минут.
• Вероятность получить ровно 20 посетителей:

𝑃(𝑋 = 20) = 2020𝑒−20

20! ≈ 0.0888

• Вероятность получить от 15 до 25 посетителей:

𝑃 (15 ≤ 𝑋 ≤ 25) =
25

∑
𝑘=15

20𝑘𝑒−20

𝑘! ≈ 0.654


